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Integrating CT with the K-12 curricula
• Growing consensus that all children need to be offered experiences with 

CT in their K-12 years

• In order to reach every student

– Computing education must be introduced as part of  a curriculum

– Integrated with existing curricula

• Our approach (Sengupta, et al., 2013)

– Integrate CT with existing middle school science curricula

– Goal: Synergistic learning of  science and CT concepts

(NRC 2010; Basu, et al., 2017; Navlakha, & Bar‐Joseph, 2011; Ioannidou, et al., 2010; 

Weintrop et al, 2016; Wilensky, Brady & Horn, 2014)
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What is Computational Thinking?
• General, analytic approach to:

– Problem solving

– System design

– Understanding human behavior

• Concepts fundamental to computing & computer science

– Algorithm design & structure

– Decomposition & Composition

– Modularity

• Practices central to STEM modeling, reasoning, and problem solving

– Problem representation

– Abstraction and decomposition

– Simulation and prediction

– Verification
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Distinguishing characteristics of  our research
• Emphasis on integrating CT with existing middle  (& high) school science curricula

– Simple enough for use by science teachers with no programming experience

• Understanding challenges typically faced by students working in such CT-based 
environments

– Focus on synergistic integrated learning

• Developing and evaluating an adaptive scaffolding framework based on an assessment 
of  students’ modeling strategies and performances

– Students solve complex, open-ended problems; provide scaffolding that helps them learn and 
succeed

• Use of  multiple modes of  assessment for studying students’ science and CT learning and 
characterizing students’ learning processes

– Analyze students’ learning performances and behaviors
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Outline of  Talk
• Designing  Open Ended Learning Environments that focus on 

synergistic science and CT learning

• The CTSiM system

• Early Studies
– Understanding Students’ Difficulties

– Provide better scaffolding and adaptive feedback

• Recent studies
– Focus on synergistic learning and students’ learning behaviors

– Effectiveness of  adaptive strategy support

• Discussion and Conclusions
– On going work in developing units for middle and high school curricula
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OELEs Developed by our group
• Open-ended Learning Environments (OELEs)

– Students are provided with specific goals 

• Build model of  an airdrop from a moving aircraft – Learning by Modeling

• Solve a problem (How long will the fish survive in my fish tank?) 

– Set of  tools to scaffold their information acquisition, solution construction, 
and solution assessment tasks

• Resources

• Model Building Representations & Interfaces

• Verification Tools

– But they are free to go about developing their solutions as they like

• Example systems: Betty’s Brain; CTSiM, C3STEM, C2STEM
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CTSiM: Design Principles
(Sengupta, et al., 2013)

• Low threshold: easy to learn

• High ceiling: advanced modeling 

& programming possible

• Wide walls: range of  artifacts 

(e.g., science phenomena, 

animations, & games)

• Scaffolding

– Algorithm visualization

– Debugging support

– Feedback from virtual agents
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CTSiM Pedagogy
• Learning by modeling: Students build simulation models of  complex 

science topics

• Agent-based, visual programming approach using a domain specific 
modeling language (DSML)

– Agent based modeling leverages intuitions about individual agents to help 

understand emergent system behaviors

– A DSML helps contextualize programming constructs in domain concepts 
and emphasize the generality of  CT constructs across domains

• Tools provided to acquire information relevant for model construction

• Tools provided to test and verify models as agent-based simulations

• Tools for problem solving
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Modeling Support 
Build models at different levels of  abstraction

• Modeling using two separate but linked representations

• Conceptual modeling

– Organize the domain in terms of  its agents, environment elements, their properties 
and behaviors

– Describe agent behaviors as sense-act processes

• Computational modeling

– Drag and arrange blocks from a provided computational palette to describe agent 
behaviors

– Availability of  blocks in the palette for an agent behavior dependent on 
conceptualization of  sense-act processes for the behavior

• An example of  recent interface changes based on previous observations

– Students previously used a lot of  trial and error while selecting and arranging blocks

– Students had problems identifying entities and their interactions
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Learning by Modeling
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The conceptual modeling interface for organizing the domain 
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The linked conceptual-computational 

representation for modeling agent behaviors
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The ‘Run’ interface for observing model behaviors

CTSiM DSML 

visual primitives

Intermediate language 

computational 

primitives

NetLogo 

Commands
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The model behavior ‘Compare’ interface
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The domain resources or ‘Science book’ interface

Students are provided 

with resources 

containing relevant 

information about the 

science domain they 

are modeling
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The CT resources or ‘Programming guide’ interface

Students are also 

provided with 

resources explaining 

and providing 

examples of  agent-

based modeling and 

computational 

concepts used in 

CTSiM
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Example of  formative assessments for checking science 

and CT understanding
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Recent work: Supporting Critical Thinking Skills

• Evidence Collection by Simulation – Diffusion Unit
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Evidence Collection

• Guided construction of  important 

relations

– Temperature, Concentration 

Gradient, Equilibrium, and Heading
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Collect & Use Evidence Cards
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• Acquire an evidence card that 

summarizes the learning construct 

of  an evidence collection subtask

• Enabled when the corresponding 

questions are correctly answered

• Learners can click on a card during 

model building activities to 

reference the learning construct;



Computational concepts and practices fostered in CTSiM

• Concepts:

– Algorithmic notions of  flow of  control: serial execution, conditional logic, 

iterations

– Variables to define agent properties and behaviors

– user inputs to study different scenarios

• Practices:

– Structured problem decomposition using an agent-based framework

– Abstraction and modularizing

– Being incremental and iterative – combining modeling representations

– Testing and debugging
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EARLY STUDIES WITH CTSIM
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Classroom Study with CTSiM

• Refs: Basu, et al., 2014 (CSEDU), 2015 (ICCE, ICLS)

• Quasi-experimental design
– 26 5th grade students (average age = 10.5)

– Study supervised by science teacher assisted by a graduate research 
assistant (Basu)

– Study run daily during science period (45 minutes/day) for 15 days over a 
period of  3 weeks

– Students worked individually on all activities

– Pre-test (Day 1)  Kinematics units (Shapes + Roller Coaster: Days 2-7) 
Post-test: Kinematics + CT (Day 8)  Ecology units (Macro + Micro Fish 
tank: Days 9-14)  Post Test: Ecology + CT (Day 15)
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Multiple measures for assessing student learning

1. Summative science and CT tests (pre-post design)

2. Accuracy of  students’ conceptual and computational models 

& temporal evolution of  the models

– Distance metrics

3. Average Resource Reading Time
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Summary of  Results
• Significant learning gains in both science and CT concepts

– Learning gains, i.e., pre- to post test differences,  in science and CT,  p < 0.001

• Models compared against expert models

– Correctness, Incorrectness & Distance wrt expert model

– Model accuracy strong predictor of  pre-post learning gains

• Resource Reading Time

– CT decreased successively from one unit to the next – from  1221 sec to 34 sec

– Science book reading time  difficulty of  unit
• Model accuracy  reading time
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Challenges students face when building models
• Basu, et al. (2016) RPTEL Journal

• Domain Knowledge Challenges

– Incomplete or Incorrect Domain Knowledge
• e.g., Acceleration always increases speed; non zero speed  acceleration;

lack of  knowledge of  waste cycle in fish tank ecosystem

• Modeling / Agent Based Thinking Challenges

– Identifying interactions among entities; modeling initial conditions correctly; systematic 
checking; lack of  verification strategies
• e.g., relation between steepness and acceleration; relation between fish hunger, swim to food, and 

energy gain (swimming decreases energy; eating increases energy)

• Programming / Computational Challenges

– Modeling conditionals, choosing the conditions correctly; creating correct nested loops
• e.g., nested conditionals for roller coaster motion; generality of  certain procedures, e.g., eat, breathe 

– therefore, they can be reused
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RECENT WORK ON UNDERSTANDING 

STUDENTS’ LEARNING BEHAVIORS IN CTSIM
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Online assessment of  learner behavior and 

performance for adaptive scaffolding

• Open-ended nature of  CTSiM tasks

– Freedom to choose from a variety of  tasks and combine them in 
different ways

– Difficult to infer student plans & strategies for achieving task goals

• Our approach:

– A task and strategy based modeling framework along with 
‘effectiveness’ and ‘coherence’ measures to combine students’ 
behavior and performance information in the system
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The CTSiM task model
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Effectiveness and coherence relations defining strategies
• Kinnebrew, Segedy, & Biswas (2017) – IEE TLT; Segedy, Kinnebrew, & Biswas (2015) – JLA

• Effectiveness of  actions:

– Actions are considered effective if  they move the learner closer to their corresponding 
task goal

• Coherence between actions:

– Two temporally ordered actions (x → y), i.e., x before y, exhibit the coherence 
relationship (x => y) if  x and y share contexts, and the context for y contains 
information contained in the context for x

– The context for an action comprises specific information about the action, such as the 
specific resource pages read, the particular conceptual or computational components 
edited, or the agent behaviors compared
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Our task and strategy based modeling framework
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Adaptive Scaffolding: Combining strategy and 

performance information to assess and scaffold learners

• Scaffold suboptimal strategies when 

– Modeling performance is below par (Ineffective SC actions) & 

Incorrect agent behaviors not bring assessed in SA actions

• Also, scaffold desired strategies that lack coherence or lead to low 

modeling performance (i.e., does not match expert model)

– e.g.,  a desired (SC => Science Read) strategy is ineffective 

if the Science Read not coherent with behavior blocks created in SC, or 

Read corresponds to part of  model that student has already verified to be 

correct
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Adaptive scaffolding in CTSiM

• Principles guiding the feedback

– Help students only when they have recurrent problems with a task or 

use of  a strategy

– Feedback contextualized by student’s current activities  and 

information available to the student

– Conversational, mixed-initiative dialog initiated by the mentor agent 

– Suggest useful strategies and where to focus attention

– Never provide bottom out hints (unlike ITS, especially Cognitive 

Tutors)
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Strategies and their suboptimal variants
• Strategies monitored were not exhaustive (Basu & Biswas, 2016 –UMUAI Journal)

– Were based on students’ difficulties observed in previous studies

• Picked five strategies to monitor and provide feedback and hints

• S1: Solution construction followed by relevant information acquisition strategy (SC 
Science Read)

– Suboptimal S1: (ineffective SC → Science Read), incoherent action sequence

• S2: Solution assessment followed by relevant information acquisition strategy (SA 
Science Read)

– Suboptimal S2: (effective SA detecting incorrect agent behaviors → Science Read), incoherent action sequence

• S3: Information acquisition prior to solution construction or assessment strategy 
(Science Read  SC|SA) 

– Suboptimal S3: lack of  a Science Read action or an incoherent Science Read action before an effective SA action 

detecting incorrect agent behaviors
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Strategies and their suboptimal variants

• S4: Test in parts strategy (Effective comparison by isolating erroneous parts or 

separating erroneous parts)

– Suboptimal S4: ineffective Compare action

• S5: Coherence of  Conceptual and Computational models strategy (Sense-act 

specification  Computational build)

– Suboptimal S5: incoherent (Sense-act build → Computational build) action sequence or lack of  the 

action sequence

07/13/2017 CTE 2017 Invited Talk 35



Recent experimental study using CTSiM

• Ninety-eight 6th grade students (4 sections)

– Two conditions: Control (No adaptive scaffolding) versus 

Experimental (adaptive scaffolding)

– Students from two sections assigned to control condition (n=46) 

and students from the other two sections assigned to experimental 

condition (n=52)

– Study run daily during science period (1 hour slot for each section) 

over a period of  3 weeks

– Students worked individually on all activities
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Assessing the effectiveness of  CTSiM & 

our scaffolding approach
• Synergistic learning gains in science topic and CT

– Pre-post tests 

– Reduction in difficulties over time, and reduction in errors made across multiple units

– Correlation between modeling accuracy versus pre-post learning gains

– Evolution of  modeling accuracy

– Transfer task – modeling skills and ability in pencil-and-paper test

• Advantages of  coupled representations (with supporting feedback)

– Modeling accuracy

– Change in model building behaviors 

• Effectiveness of  adaptive feedback

– Model building accuracy

– Use of  strategies

– Change in amount of  feedback received across time

07/13/2017 CTE 2017 Invited Talk 37



Learning activity progression
• Kinematics Unit (single agent)

– Teaches relations between speed, acceleration and distance; mathematical 
representations of  motion

– Introductory practice activity: Draw simple shapes followed by growing and 
shrinking spirals to understand the relations  between constant acceleration, speed, 
and distance

– Activity 1: Model motion of  a roller-coaster on different segments of  its track

• Ecology Unit (multiple agents)

– Teaches notions of  balance and interdependence amongst species in an ecosystem

– Activity 2: Build a macro-level semi-stable model of  the behavior of  fish and 
duckweed in a fish-tank

– Activity 3: Build a micro-level model of  the waste cycle in the fish-tank with bacteria 
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Summary of  Results 
• Experimental vs Control group

– Performance
• Significantly higher synergistic learning gains (Kinematics, Ecology, CT)

• More accurate models (conceptual and computational)

• Modeling effectiveness, trends, and consistency better

– Learning Behaviors
• CT Practices: Better able to build and test models in parts; more coherence when 

switching between two modeling representations; consistency in model building 
actions

– Feedback
• Effective, Showed fading effect

– Good transfer of  approach and practices
• Computer to paper and pencil task
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Science and CT pre-post learning gains

• All students gained on science and CT from pre to post test

• Experimental group students had higher gains

– ANCOVAs factoring out effects of  pre-test scores
• Kinematics: F = 18.91, p < 0.0001, ηp

2 = 0.17

• Ecology: F = 52.29, p < 0.0001, ηp
2 = 0.36

• CT: F = 40.69, p < 0.0001, ηp
2 = 0.31

07/13/2017

Pre Post
Pre-to-post 

gains

Pre-to-post 

p-value

Pre-to-post 

Cohen’s d

Kinematics 

(max = 45)

Control 12.52 (6.32) 15.55 (5.72) 3.03 (4.78) <0.0001 0.55

Experimental 16.65 (6.61) 22.38 (6.39) 5.72 (5.62) <0.0001 0.88

Ecology

(max = 39.5)

Control 7.40 (3.90) 16.19 (8.35) 8.78 (7.17) <0.0001 1.35

Experimental 9.39 (4.47) 27.91 (6.70) 18.53 (6.31) <0.0001 3.25

CT

(max = 60)

Control 16.49 (5.68) 22.53 (5.70) 6.04 (5.44) <0.0001 1.06

Experimental 22.72 (7.68) 32.24 (5.86) 9.52 (5.23) <0.0001 1.39
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Modeling performance across conditions
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Evolution of  students’ models in an activity

• Effectiveness - the proportion of  model edits that bring the model closer to 

the expert model

• Slope – the rate and direction of  change in the model distance as 

students build their models

• Consistency – How closely the model distance evolution matches a linear 

trend. 

– For all three measures experimental group outperformed control group, 𝑝 < 0.05
or better
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CT Practices

Use of  Linked Modeling representations
• Students in the experimental condition decompose their modeling task into 

more manageable chunks compared to students in the control condition. 

They also become better at decomposition with time

– smaller chunk sizes and greater number of  switches between conceptual & 

computational models

• Coherence between the two levels of  abstractions in each activity is higher 

for experimental than the control group

– Increases across units for the experimental group

• Better decomposition and higher coherence significantly correlated with 

higher science learning
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Variation of  feedback received over time
• Students in the experimental condition required a combination of  task oriented and strategy 

feedback in all activities

• Fading effect on the need for scaffolds

– The task oriented feedback required decreased significantly from the rollercoaster unit to the fish-

micro unit

– The strategy feedback needed increased from the rollercoaster to the complex fish-macro activity but 

then decreased significantly in the fish-micro activity
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Transfer Test: Conceptual and Computational 

modeling skills
• Modeling a wolf-sheep-grass ecosystem on paper with all 

system scaffolds removed
Experimental scored significantly higher than  Control
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Control Experimental p-value Cohen’s d

Conceptual modeling 

score

Conceptual entities (max = 5) 4.66 (0.79) 4.92 (0.39) < 0.05 0.43

Conceptual sense-act (max = 41) 11.54 (5.29) 20.93 (6.70) < 0.001 1.56

Total score (max=46) 16.21 (5.45) 25.86 (6.73) < 0.001 1.58

Computational modeling score (max=48) 17.33 (9.23) 30.50 (8.98) < 0.001 1.46

Total transfer test score (max=94) 33.53 13.80) 53.36 14.49) < 0.001 1.63



Summary & Conclusions
• CTSiM helps seamlessly integrate CT with middle school science 

curricula, and fosters synergistic learning of  science and CT concepts

• Analyzing students’ actions using task & strategy models, and assessing 
them in  terms of  effectiveness and coherence measures works well 

• Adaptive scaffolding based on learner performance and behavior 
information results in 

– Higher science and CT learning gains

– Better CT practices

– Better modeling performance 

– Better able  to transfer modeling skills

– More frequent use of  desired strategies.
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Recent Work

• C2STEM: Collaborative Computational STEM Learning

(supported by NSF STEM+C grant)

– run.c2stem.org

– Directed to High School Physics curriculum in Mechanics

– Vanderbilt lead

– Combines instructional and model building tasks; embedded 

assessments (SRI); PFL assessments (Stanford); Problem solving
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Science and CT pre-post learning gains

• All students gained on science and CT from pre to post test
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Model evaluation metrics

• Bag of  words metric (Piech, et al., 2012) to compare 
blocks/primitives used in student model against those in the expert 
model

1. 𝐰𝐞𝐢𝐠𝐡𝐭𝐞𝐝𝐀𝐯𝐞𝐫𝐚𝐠𝐞𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬 =
 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 |𝑢𝑠𝑒𝑟 ∩𝑒𝑥𝑝𝑒𝑟𝑡|

 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 |𝑒𝑥𝑝𝑒𝑟𝑡|

Correctness score: Proportion of   expert model blocks contained in student model

2. 𝐰𝐞𝐢𝐠𝐡𝐭𝐞𝐝𝐀𝐯𝐞𝐫𝐚𝐠𝐞𝐈𝐧𝐜𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬 =
 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒( 𝑢𝑠𝑒𝑟 − 𝑢𝑠𝑒𝑟 ∩𝑒𝑥𝑝𝑒𝑟𝑡 )

 𝑒𝑎𝑐ℎ 𝑝𝑟𝑜𝑐𝑒𝑑𝑢𝑟𝑒 |𝑒𝑥𝑝𝑒𝑟𝑡|

Incorrectness score: Extra blocks in student model, normalized by size of  expert model

3. Vector distance from (correctness, incorrectness) to (1,0):

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠2 + (𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 − 1)2

Distance = Vector distance from (correctness, incorrectness) vector to (1,0)
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Assessing students’ computational models

• Models compared against expert models

– Correctness, Incorrectness & Distance wrt expert model
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• Model accuracy strong predictor of  pre-post learning gains

– e.g., r(model distance fish micro final distance, Ecology gain) =  0.52

– Edit effectiveness, Consistency of edits – strong predictors of pre-post gains (p < 0.05)



Reading Time: Domain & CT resources

• Time spent reading CT and domain resources

• Also, r(model fish micro distance, Ecology reading time) = 0.41, 

p < 0.05
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Multiple measures for assessing student learning

1. Summative science and CT tests (pre-post design)

2. Accuracy of  the conceptual and computational models 
built and the temporal evolution of  the models

3. Learning transfer test when all system scaffolds are 
removed

4. Use of  linked modeling representations to study use of  CT 
practices like abstraction and decomposition

5. Use of  desired strategies

6. Variation of  feedback received over time
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Use of  strategies S1-S2

• Average use of  strategies higher in the experimental condition

– A higher proportion of  students in the experimental condition used the strategies effectively
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RC Fish-macro Fish-micro

Strategy Percentage 

of students

Mean 

(s.d.)

Percentage 

of students

Mean 

(s.d.)

Percentage 

of students

Mean 

(s.d.)

S1. Solution 

construction 

followed by 

relevant science 

reads

Control
37%

1.33 

(2.99)
54%

2.43

(4.8)
70%

1.93 

(2.05)

Experimental 

63%
2.23

(4.71)
83%

4.75 

(4.97)*
85%

3.4 

(4.51)*

S2. Solution 

assessment followed 

by relevant science 

reads

Control
4%

0.07 

(0.33)
26%

0.76 

(1.66)
26%

0.85 

(9.31)

Experimental
38%

1.37 

(2.69)**
44%

1.66 

(2.29)*
44%

1.06 

(0.24)

*p < 0.05, **p < 0.01, ***p < 0.001



Use of  strategies S3-S5

• Average use of  strategies higher in the experimental condition
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RC Fish-macro Fish-micro

Strategy Percentage 

of students
Mean (s.d.)

Percentage 

of students
Mean (s.d.)

Percentage 

of students
Mean (s.d.)

S3. Fraction of assessed 

agent behaviors which 

were read about before 

being assessed

Control 80% .73 (.42) 93% .5 (.33) 83% 0.89 (0.27)

Experimental 92% .86 (.28) 96% .77 (.32)*** 100% 0.96 (0.16)

S4. Number of partial-

model comparisons
Control 0% na 48% 2.65 (5.79) 15% 0.57 (1.98)

Experimental 0% na 58% 5.42 (7.16)* 19%
1.97 

(3.22)*

S5. Fraction of added 

sense-act properties 

which were either 

removed or followed by a 

coherent computational 

edit

Control 100% 0.67 (0.27) 100% 0.69 (0.31) 98% 0.59(0.31)

Experimental 100%
0.97 

(0.1)***
100%

0.99 

(0.03)***
100%

0.98 

(0.06)***

*p < 0.05, **p < 0.01, ***p < 0.001



Assessing students’ conceptual and computational models

• Models compared against expert models

• Conceptual model:

– Set comparison to find expert model elements missing in student model and 
extra elements in student model

– distance=missing + extra elements in student model, normalized by number 
of elements in the expert model 

• Computational model:

– Correctness score: Proportion of   expert model blocks contained in student 
model

– Incorrectness score: Extra blocks in student model, normalized by size of  
expert model

– Distance: Vector distance from (correctness, incorrectness) vector to (1,0)
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Use of  linked modeling representations

• This helps study students’ use of  CT practices like decomposing a 

complex task, understanding relations between abstractions

• Metrics used:

– Total number of  conceptual-computational activity chunks: measures how many times 

a student switched between the two representations

– Average conceptual and computational chunk sizes: number of  modeling actions of  

one type taken before shifting to a different modeling representation

– Coherence between conceptual modeling actions and computational modeling actions
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